Sains Malaysiana 53(3)(2024): 653-665
http://doi.org/10.17576/jsm-2024-5303-13
Formation of Inclusion Complex of
Curcumin and Tetrahydrocurcumin Prevents Angiogenesis
by Inhibiting VEGF Activity: An in-silico Study
(Pembentukan Kompleks Rangkuman Kurkumin dan Tetrahidrokurkumin Menghalang Angiogenesis dengan Merencat Aktiviti VEGF: Suatu Kajian in silico)
FIRLI RAHMAH PRIMULA DEWI1,*, ULIE VIANISSA DWIUTAMI TAMBUNAN1, PUTRI AMATUL BARI1, MUHAMMAD ARDIANSYAH
FARID1, NADIRA AISHA ANJANI1, SRI PUJI ASTUTI WAHYUNINGSIH1,
AMY YI HSAN SAIK2, YONG YOKE KEONG3, VUANGHAO LIM4,
WEN NEE TAN5 & MOHAMMED ABDULLAH MAHDI ALSHAWSH6
1Department
of Biology, Faculty of Science and Technology, Universitas Airlangga, Indonesia
2Department
of Pre-Clinical Sciences, M. Kandiah Faculty of
Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long City Campus, Bandar Sungai
Long, Cheras, 43000 Kajang,
Selangor, Malaysia
3Department
of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4School
of Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Pulau Pinang,
Malaysia
5Chemical
Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800
USM Penang, Pulau Pinang, Malaysia
6Department
of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur,
Malaysia
Received: 17 July 2023/Accepted: 6 February 2024
Abstract
Curcumin and tetrahydrocurcumin (THC) are known
for their anticancer properties, but limited solubility in water hinders their
effectiveness against cancer. In this study, we conducted an in silico exploration of β-cyclodextrin's potential to form inclusion complexes with
curcumin or THC. The aim of this
study was to assess the potential of curcumin and THC
inclusion complexes to inhibit vascular endothelial growth factor (VEGF)
signaling pathway, a key element in carcinogenesis. The in silico analysis involved multiple stages, such as bioactive compound preparation,
biological activity prediction, 3D structure retrieval of VEGF and VEGFR, protein-ligand
docking, and visualization. The results of the study demonstrated that
both the curcumin- and THC-inclusion complexes exhibit a
lower requirement for binding free energy to interact with VEGFR compared to
curcumin or THC molecules alone. When VEGFR binds with curcumin, the
curcumin-inclusion complex, or the THC-inclusion complex before interacting
with VEGF, there is a notable increase in the binding free energy for the
VEGF-VEGFR interaction. Specifically, the presence of THC-inclusion complex demonstrates the
highest binding free energy for the VEGF-VEGFR interaction. The molecular
dynamic simulation study shows that when VEGFR binds with curcumin, curcumin-inclusion complex, or
THC-inclusion complex, the fluctuation of amino acid residues in VEGFR
decreases compared to the VEGFR protein structure before binding with these
molecules. In conclusion, this study suggests that the formation of inclusion
complexes holds considerable promise for enhancing the anticancer potential of
curcumin and THC by augmenting their anti-angiogenic activity.
Keywords: Angiogenesis; cancer; curcumin; inclusion
complex; tetrahydrocurcumin
ABSTRAK
Kurkumin dan tetrahidrokurkumin (THC) terkenal dengan sifat
antikansernya, tetapi keterlarutan terhad dalam air menghalang keberkesanannya
terhadap kanser. Dalam kajian ini, kami menjalankan penyelidikan in silico terhadap potensi β-siklodekstrin untuk membentuk
kompleks rangkuman dengan kurkumin atau THC. Matlamat kajian ini adalah
untuk menilai potensi kompleks rangkuman kurkumin dan THC untuk menghalang laluan isyarat faktor pertumbuhan
endoteliaum vaskular (VEGF), unsur
utama dalam karsinogenesis. Analisis in silico melibatkan pelbagai peringkat seperti penyediaan sebatian bioaktif, ramalan
aktiviti biologi, struktur 3D temuan semulaVEGF
dan VEGFR, dok protein-ligan dan visualisasi. Hasil kajian menunjukkan bahawa
kedua-dua kompleks rangkuman kurkumin dan THC menunjukkan keperluan yang lebih rendah untuk mengikat
tenaga bebas untuk berinteraksi dengan VEGFR berbanding dengan molekul kurkumin
atau THC sahaja. Apabila VEGFR diikat dengan kurkumin sebelum kompleks rangkuman kurkumin atau kompleks rangkuman THC berinteraksi dengan
VEGF, terdapat peningkatan ketara dalam tenaga bebas pengikat untuk interaksi
VEGF-VEGFR. Khususnya, kehadiran kompleks rangkuman THC menunjukkan tenaga bebas pengikat
tertinggi untuk interaksi VEGF-VEGFR. Kajian simulasi dinamik molekul menunjukkan bahawa apabila VEGFR mengikat dengan
kurkumin, kompleks rangkuman kurkumin atau kompleks rangkuman THC, turun naik
sisa asid amino dalam VEGFR berkurangan berbanding dengan struktur protein
VEGFR sebelum diikat dengan molekul ini.
Kesimpulannya, kajian ini mencadangkan bahawa pembentukan kompleks rangkuman berpotensi untuk meningkatkan potensi antikanser kurkumin
dan THC dengan menambah aktiviti anti-angiogenik mereka.
Kata kunci: Angiogenesis; kanser; kurkumin; kompleks rangkuman; tetrahidrokurkumin
References
Aggarwal,
B.B., Deb, L. & Prasad, S. 2015. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 20: 185-205.
Binion, D.G., Otterson, M.F. & Rafiee, P.
2008. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal
microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 57: 1509-1517.
Chan, H.K. & Ismail, S. 2014. Side
effects of chemotherapy among cancer patients in a Malaysian General Hospital:
Experiences, perceptions and informational needs from clinical
pharmacists. Asian Pacific Journal of Cancer Prevention 15:
5305-5309.
Chaudhary, V.B. & Patel,
J.K. 2013. Cyclodextrin inclusion complex to enhance
solubility of poorly water-soluble drugs: A review. International Journal
Pharmaceutical Sciences and Research 4: 68-76.
Cheirsilp, B. & Rakmai, J. 2016.
Inclusion complex formation of cyclodextrin with its
guest and their applications. Biology, Engineering and Medicine 2: 2-6.
Cheng, F., Li, W., Zhou, Y.,
Shen, J., Wu, Z., Liu, G., Lee, P.W. & Tang, Y. 2012. admetSAR:
A comprehensive source and free tool for assessment of chemical ADMET
properties. J. Chem. Inf. Model. 52: 3099-3105.
Cid-Samamed, A., Rakmai, J., Mejuto, J.C., Simal-Gandara, J.
& Astray, G. 2022. Cyclodextrins inclusion complex: Preparation methods,
analytical techniques and food industry applications. Food Chemistry 384: 132467.
Dewi, F.R.P., Ahmar, R.F., Alifiyah, N.I.I., Shoukat, N.
& Wahyuningsih, S.P.A. 2021. The potential of A. muricata bioactive compounds to inhibit
HIF1α expression via disruption of tyrosine kinase receptor activity: An in silico study. Acta Informatica Medica 29:
176.
Ferrara, N. 2005. VEGF as a therapeutic
target in cancer. Oncology 69: 11-16.
Fu, Z., Chen,
X., Guan, S., Yan, Y., Lin, H. & Hua, Z.C. 2015. Curcumin inhibits
angiogenesis and improves defective hematopoiesis induced by tumor-derived VEGF
in tumor model through modulating VEGF-VEGFR2 signaling pathway. Oncotarget 14: 19469-19482.
Han, X.,
Deng, S., Wang, N., Liu, Y. & Yang, X. 2016. Inhibitory effects and
molecular mechanisms of tetrahydrocurcumin against
human breast cancer MCF-7 cells. Food & Nutrition Research 60:
30616.
Hanahan, D. &
Weinberg, R.A. 2011. Hallmarks of cancer: The next generation. Cell 144:
646-674.
Hashem, S., Tayyiba, A.A., Sabah, A., Sabah, N., Geetanjali,
S., Shahid, A., Sharefa,
A.M., Therachiyil, L., Mir, R., Elfaki, I., Mir, M.M., Jamal, F., Masoodi, T., Uddin, S., Singh, M., Haris, M., Macha, M. &
Bhat, A.A. 2022. Targeting cancer signaling pathways by
natural products: Exploring promising anti-cancer agents. Biomedicine &
Pharmacotherapy 150: 113054.
Kamalakkannan, V., Puratchikody, A., Masilamani, K.
& Senthilnathan, B. 2010. Solubility enhancement
of poorly soluble drugs by solid dispersion technique. Journal of Pharmacy
Research 3: 2314-2321.
Kooti, W., Servatyari, K., Behzadifar, M., Asadi-Samani, M., Sadeghi, F., Nouri, B. & Zare,
M.H. 2017. Effective medicinal plant in cancer treatment, part 2: Review study. Journal of Evidence-Based Complementary & Alternative Medicine 22:
982-995.
Kuhn, M., von Mering, C., Campillos, M.,
Jensen, L.J. & Bork, P. 2008. STITCH: Interaction networks of chemicals and
proteins. Nucleic Acids Res. 36(Database issue): D684-688.
Laskowski, R.A. & Swindells, M.B. 2011. LigPlot+:
Multiple Ligand–Protein interaction diagrams for drug discovery. Journal of
Chemical Information and Modeling 51: 2778-2786.
Leclercq, L. 2016. Interactions
between cyclodextrins and cellular components:
Towards greener medical applications. Beilstein Journal of Organic Chemistry 12: 2644-2662.
Lee, W.H., Loo, C.Y., Bebawy, M., Luk, F., Mason, R.S.
& Rohanizadeh, R. 2013. Curcumin and its
derivatives: Their application in neuropharmacology and neuroscience in the
21st century. Curr. Neuropharmacol. 11: 338-378.
Liu, W., Zhang, Z.,
Lin, G., Luo, D., Chen, H., Yang, H., Liang, J., Liu, Y., Xie,
J., Su, Z. & Cao, H. 2017. Tetrahydrocurcumin is
more effective than curcumin in inducing the apoptosis of H22 cells via
regulation of a mitochondrial apoptosis pathway in ascites tumor-bearing mice. Food
& Function 8(9): 3120-3129.
Low, Z.X., Teo, M.Y.M., Nordin, F.J., Dewi, F.R.P., Palanirajan, V.K.
& In, L.L.A. 2022. Biophysical evaluation of water-soluble curcumin
encapsulated in β-cyclodextrins on colorectal
cancer cells. International Journal of Molecular Sciences 23: 12866.
Lugano, R.,
Ramachandran, M. & Dimberg, A. 2020. Tumor
angiogenesis: Causes, consequences, challenges and opportunities. Cellular
and Molecular Life Sciences 77: 1745-1770.
Macindoe, G., Mavridis, L., Venkatraman, V., Devignes, M.D. & Ritchie, D.W. 2010. HexServer: An FFT-based protein docking server powered by
graphics processors. Nucleic Acids Research 38: W445-W449.
Martin-Del Valle, E.M. 2004. Cyclodextrins and their uses: A review. Process
Biochemistry 39: 1033-1046.
Minder, P., Zajac, E., Quigley, J.P. & Deryugina,
E.I. 2015. EGFR regulates the development and microarchitecture of intratumoral angiogenic vasculature capable of sustaining cancer cell intravasation. Neoplasia 17: 634-649.
Muninggar, L., Widjiati, W., Yuliati, I., Askandar, B. & Hartono, P. 2019. Effects of curcumin on
vascular endothelial growth factor expression on Rattus norvegicus cervical cancer xenograft model. Indonesian
Journal of Cancer 12(3): 95.
Niu, G. & Chen, X.
2010. Vascular endothelial growth factor as an anti-angiogenic target for
cancer therapy. Curr. Drug Targets 11:
1000-1017.
Paramera, E.I., Konteles, S.J. & Karathanos,
V.T. 2011. Stability and release properties of curcumin encapsulated in Saccharomyces
cerevisiae, β-cyclodextrin and modified
starch. Food Chemistry 125: 913-922.
Patel, M.,
Chilton, M.L., Sartini, A., Gibson, L., Barber, C.,
Covey-Crump, L., Przybylak, K.R., Cronin, M.T.D.
& Madden, J.C. 2018. Assessment and reproducibility of quantitative
structure-activity relationship models by the nonexpert. J. Chem. Inf. Model. 58: 673-682.
Poerwosusanta, H., Utomo, D.H., Noor, Z., Oktaviyanti,
I.K., Mintaroem, K., Pardjianto,
B., Widodo, M.A. & Widjajanto, E. 2019. Eleutherine americana Merr. extract regulates mitochondrial calcium
homeostasis in intra-abdominal adhesion: A computational study. Drug
Invention Today 11: 526-530.
Quintero-Fabián, S., Arreola, R., Becerril-Villanueva,
E., Torres-Romero, J.C., Arana-Argáez, V., Lara-Riegos, J., Ramírez-Camacho, M.A.
& Alvarez-Sánchez, M.E. 2019. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 9:
1370.
Rege, S.A., Varshneya, M.A. & Momin, S.A.
2021. A mini-review: Comparison between curcumin and tetrahydrocurcumin based on their activities. Croatian Journal of Food Science and Technology 13: 128-132.
Rege, S.A., Momin, S.A., Bhowmick, D.N. & Pratap, A.P. 2012. Stabilization of emulsion and
butter like products containing essential fatty acids using kalonji seeds extract and curcuminoids. J. Oleo Sci. 61(1): 11-16.
Shanmugam, M.K., Lee, J.H.,
Chai, E.Z.P., Kanchi, M.M., Kar,
S., Arfuso, F., Dharmarajan,
A., Prem Kumar, A., Samy Ramar, P., Looi, C.Y., Mustafa,
M.R., Tergaonkar, V., Bishayee,
A., Ahn, K.S. & Sethi,
G. 2016. Cancer prevention and therapy through the modulation of transcription
factors by bioactive natural compounds. Seminars in Cancer Biology 40-41: 35-47.
Shibuya, M. 2011.
Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in
angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2: 1097-1105.
Simons, M.
2012. An inside view: VEGF receptor trafficking and signaling. Physiology 27(4):
213-222.
Sopo, M., Anttila, M., Hämäläinen, K., Kivela, A., Ylä-Herttuala, S., Kosma, V., Keski-Nisula, L. & Sallinen, H. 2019. Expression profiles of
VEGF-A, VEGF-D and VEGFR1 are higher in distant metastases than in matched
primary high grade epithelial ovarian cancer. BMC Cancer 19: 584.
Tomeh, M.A., Hadianamrei, R. & Zhao, X. 2019. A review of curcumin
and its derivatives as anticancer agents. International Journal of Molecular
Sciences 20: 1033.
Wadood, A., Ahmed, N.,
Shah, L., Ahmad, A., Hassan, H. & Shams, S. 2013. In-silico drug design: An approach which revolutionarised the
drug discovery process. OA Drug Des. Deliv. 1(1): 3.
Wahyuningsih, S.P.A., Dewi, F.R.P., Hsan, A.S.Y., Lee, M.L., Lim, V., Aun,
L.I.L., Ling, T.C. & Marviella, S.T. 2022. The
regulation of hypoxia inducible factor (HIF) 1α expression by quercetin:
An in silico study. Acta Informatica Medica 30:
96.
Wang, T.Y.
& Chen, J.X. 2019. Effects of curcumin on vessel formation insight into the
pro- and antiangiogenesis of curcumin. Evid. Based Complement Alternat.
Med. 2019: 1390795.
World Health
Organization (WHO). 2020. Cancer.
https://www.who.int/news-room/fact-sheets/detail/cancer Accessed on 24 January
2023.
Wilken, R., Veena, M.S., Wang, M.B. & Srivatsan,
E.S. 2011. Curcumin: A review of anti-cancer properties and therapeutic
activity in head and neck squamous cell carcinoma. Mol. Cancer 10: 12.
Yang, H.,
Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W.,
Liu, G. & Tang, Y. 2019. admetSAR 2.0:
web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 35(6): 1067-1069.
*Corresponding author; email:
firli.rahmah@fst.unair.ac.id
|